1. 创业头条
  2. 前沿领域
  3. 人工智能
  4. 正文

浪潮信息“拓荒”:一场面向大模型时代的性能“压榨”

 2023-11-03 15:04  来源:A5专栏  我来投稿 撤稿纠错

  域名预订/竞价,好“米”不错过

文 | 智能相对论

作者 | 沈浪

全球人工智能产业正被限制在了名为“算力”的瓶颈中,一侧是供不应求的高端芯片,另一侧则是激战正酣的“百模大战”,市场的供求两端已然失衡。

然而,大多数人的关注点仍旧还是在以英伟达为主导的高端芯片领域。

半导体的创新固然关键,但是从现实处境来讲,芯片从造出来到用起来,是一个庞大的系统工程,市场更需要一条能暂时绕开半导体创新的系统创新的技术路径,来同步释放算力,以满足现阶段爆发性的算力需求以及后期可持续的常态发展。

遵循着这一思路,就不难发现,以浪潮信息为代表的本土厂商已经开始了另一条释放算力的创新路径,即对服务器等硬件的基础架构进行创新,在硬件层面“拓荒”,“压榨”更多的硬件性能,打破算力桎梏。

只是这样的路径,似乎没有想象中的那么简单、轻松。

01 向底层“拓荒”,激活“牛鞭效应”

以服务器为例,一台服务器有超过10000个零部件,同时还涉及30多个技术领域,包括材料学、热力学、电池技术、流体力学、化学等一系列学科。此外,一台服务器里还会应用超过100种传输协议。其制造过程更是需要经历30多道流程,使用100多种加工和制造工艺等等。

若要对这样的高精密硬件的基础架构进行创新,绝非易事。

在四五年前,一些大规模数据中心用户几乎都遇到过一个相似的问题:风扇转速越快,硬盘越有可能出现性能波动,严重时还会直接掉线,非常影响硬盘的读写性能。

浪潮信息的工程师团队做了大量实验,最终锁定原因:风扇产生的噪音一旦达到120分贝,就非常容易造成硬盘磁头偏移、读写效率下降,进而导致扇区失效乃至硬盘报废、服务器宕机。

尽管这样的问题看起来很小,却对服务器的性能有着严重制约。如何解决服务器内部的风噪问题,成为了一个业内共同探索的议题。国际开放计算社区OCP组织成员包括FaceBook(现为Meta公司)、微软、浪潮信息、戴尔等企业,共同发起Storage Vibration(存储设备振动)项目,旨在解决相关的问题。

最终,浪潮信息的工程师们基于大量机理性研究和测试,发现了硬盘性能损失与声压强度间的数学规律,并构建出业界首个硬盘敏感度模型,量化出不同硬盘受到各类噪声影响后的性能表现。

以此为依据,浪潮信息也得以对最新G7服务器系统进行了全方位的优化设计,譬如通过CFD流体动力学仿真改进·不同机箱布局下的风扇的叶片形态,抑制扇叶表面因涡流脱落形成的高频噪音,提升硬盘读写效率50%;或是在机箱内通过设计40多种歌院式的消音结构,消除特定的高频噪声等等。

这些“绣花针”功夫是创新底层架构的关键,而看似很微小的基础改良,却是提升服务器性能、保障硬件平稳运行的重要因素。 在经济学领域,有一个专业术语叫作“牛鞭效应”,指一端微小的摆动被不断放大,到了另一端将演变为大幅摆动的趋势。

从硬件的应用来看,基础部件的改良也将激活“牛鞭效应”——从一张硬盘到一个服务器,再到一个数据中心,随着硬件不断叠加应用,底层的改良价值将被逐步放大,向上层传递,成为服务器安全运作、释放算力、促进人工智能产业发展的重要保障。

类似的,现阶段备受关注的芯片互联技术,也是支撑大模型大规模算力场景的关键技术,尤其是单个服务器内部芯片高速直连,是实现大规模算力集群高效协同工作的基础。作为全球领先的服务器厂商,浪潮信息在高速互连领域定义了业界第一个符合OAM(开放加速模块)规范的8卡互连硬件系统,解决了高速信号的速率提升和信号失真问题,实现开放加速规范下芯片互连的最高速率,助力着人工智能产业的持续突破。

02 一场对性能的极限“压榨”

在人工智能行业,算力的巨大需求和供给紧张已然是摆上台面的事实。为什么业内厂商想要不断地改进传统的硬件架构去释放算力,哪怕只是一点细微的声噪优化,都不遗余力地花上四五年的时间去研究、探索和创新。

细究来说,算力的供应大抵可以归结为两条路径,一是“增量拓展”,比如接入更多的服务器、建更多的数据中心,通过“堆量”的方式来提供更多的算力。二是“存量优化”,对原有架构、原有机器进行优化升级,通过“提质”的方式来把性能和效率提升起来。

其中,在这两条路径之下,“存量优化”又是必然的一条。无关乎未来算力是否紧张或宽裕,如何对现有的机器和架构进行升级优化,是行业发展的一个重要阶段,只是时间早晚的问题。

值得一提的是,现阶段,服务器行业已经有着充分的理由去推进“存量优化”这一路径。

一方面,算力领域正在面临着高端芯片紧张的问题,“增量拓展”被限制,那么业内厂商就不得不考虑“存量优化”的事情。

另一方面,源于服务器的特殊性,在服务器概念上的简单的“堆量”只能堆出各种形态和规格的服务器,但对数据中心计算能力的提升并没有什么实质性的帮助。

对此,在2014年,浪潮信息提出了“融合架构”的技术理念,旨在创造一种新的体系架构,将硬件设备中的同类资源整合成一个资源池,即便是不同的设备也能够任意地整合,再通过软件动态感知业务的资源需求,从而利用硬件重组的能力来满足各类应用的性能需求。

这种“融合架构”看似是“增量拓展”,但核心则是“存量优化”。直到融合架构3.0的发布,就可以清晰地看到,这一技术理念打破了现有服务器的逻辑架构和应用模式,实现了整机柜级别的计算、内存、存储与互联等各种IT资源的池化,形成了以系统设计为中心的新架构模式,对构建高速高性能的互联网络起到了重要作用。

简单来说,基于“池化”的概念,融合架构3.0将服务器内的计算资源、存储资源、内存资源、异构加速资源等核心IT资源重新细化,并做了“重组”,从而能使其发挥出更高的性能和应用价值。

这相当于对现有的服务器性能做了一次极限地“压榨”。 众所周知,传统服务器的性能利用率是无法达到100%,两台服务器相连得到大多是1+1<2结果,而基于融合架构3.0的支持,就有可能实现1+1>2的情况。

当然,这只是一个便于理解的理想化公式,现实大抵是达不到这个效果的。但是,其中的进步也是看得见的,特别是随着服务器的增加,当我们再来估算1+1+1+...+N的效果时,在融合架构3.0下的服务器便能发挥出远超传统架构的性能和价值。

这是融合架构3.0的价值展望,同时也是“存量优化”这一路径在服务器行业的价值呈现。正如上文提及的“牛鞭效应”,当底层细微的创新不断被放大到一个硬件、一个计算集群、一个产业生态,那么其发挥出来的作用将远超过往。

03 在算力之外

当前,在服务器行业,就能看到类似的信号。

继续以融合架构3.0为例,其打破了以往“以CPU为中心”的设计理念,从整体出发,以系统为中心,通过硬件解耦将异构计算、内存、存储等资源转变为可独立扩展的资源池。

在这个过程中,不仅实现了亚微秒级远端内存访问,并且还构建出了一种逻辑上可远端共享的内存资源池,让多台主机访问同一个内存池,从而大大提高了数据交换的效率,让Spark、Hadoop和机器学习等使用分布式数据框架的应用,能够更顺畅地实现框架内各节点间的数据交换与协作。

也就是说,融合架构3.0解决的不仅仅是服务器性能、算力释放等问题,实际上还继续向上层拓展,解决了系统应用的问题——服务器的架构创新在算力之外,带来了全新的价值呈现。

类似的,放眼全球市场,微软与英伟达合作推出的虚拟机Azure ND H100 v5 VM系列,正基于强大的硬件能力支持结合Quantum-2InfiniBand网络互连,从而帮助企业更好、更高效地处理生成式AI任务。

现阶段,大多数硬件升级并非单线的,而是考虑到上层的应用需求,如大模型训练、生成式AI任务等,结合软件系统、网络服务等进行融合创新,从而为应用场景服务。

纵观当前人工智能产业在算力层面的困顿处境,以算力牵动整个人工智能产业的发展是必然的趋势。而业内厂商在解决算力供给问题的过程,也将同步带动其他模块的升级。换句话说,解决算力问题就不能局限在高端芯片领域,更要从其他的路径寻求多元化的发展。

在这个阶段,以英伟达为主导的高端芯片领域和以浪潮信息为代表的服务器硬件升级,都将站在市场的聚光灯下。今天的市场,需要更多元、更勇敢、更执着的探索者、创新者。

*本文图片均来源于网络

#智能相对论 Focusing on智能新产业新服务,这是智能的服务NO.247 深度解读

此内容为【智能相对论】原创,

仅代表个人观点,未经授权,任何人不得以任何方式使用,包括转载、摘编、复制或建立镜像。

部分图片来自网络,且未核实版权归属,不作为商业用途,如有侵犯,请作者与我们联系。

•AI产业新媒体;

•澎湃新闻科技榜单月度top5;

•文章长期“霸占”钛媒体热门文章排行榜TOP10;

•著有《人工智能 十万个为什么》

•【重点关注领域】智能家电(含白电、黑电、智能手机、无人机等AIoT设备)、智能驾驶、AI+医疗、机器人、物联网、AI+金融、AI+教育、AR/VR、云计算、开发者以及背后的芯片、算法等。

申请创业报道,分享创业好点子。点击此处,共同探讨创业新机遇!

相关标签
大模型

相关文章

  • 搞AI?中小企业拿什么和大厂拼?

    近期,苹果发布M4芯片,号称“比当今任何AIPC的任何神经引擎都强!”紧随其后微软携“Copilot+PCs”的概念加入AIPC激战。截至目前,包括联想、惠普、华为等多家主流PC厂商在内,已经至少推出了超50款AIPC产品。AI重塑行业的机遇,谁都不想错过。对于企业来说,能否积极拥抱AIPC十分关键

    标签:
    ai智能
  • 价格战迷雾下,大模型创业者只能被动挨打?

    如果说2023年是大模型的资格赛,融资额度决定了能否晋级,2024年已然快进到了淘汰赛的阶段。字节跳动、阿里云、百度智能云、腾讯云等先后在5月中下旬加入“价格战”,轻量级模型直接免费,主力模型的API价格普遍下调了90%以上。曾经以“烧钱”著称的大模型,迅速进入到“白菜价”时代。当时就有人提出这样的

    标签:
    大模型
  • 苹果迈入AI时代,Siri总算有智商了

    文/道哥当安卓机围绕AI大做文章时,果粉们都在等待苹果AI登场。这一天终于来了。6月11日凌晨1点,苹果WWDC2024(全球开发者大会)如期而至。不同于去年,此次大会苹果没有推出任何硬件产品,而是将焦点完全集中在了操作系统更新上,依次分享了VisionOS、iOS、iPadOS、macOS、wat

  • 重庆高考新增AI智能巡查系统 确保考试公平公正

    2024年高考今天拉开帷幕,据悉,重庆市高考新增了AI智能巡查系统。该系统能够实时分析研判考试异常行为,将问题消除在萌芽状态,保障考试公平公正。

  • 产业升级视角下,数字“新动能”有了正确打开方式

    文|智能相对论作者|叶远风产业升级如火如荼,通过数字化、智能化来激发“新动能”,已经成为普遍共识。但是,作为一个泛概念,“新动能”到底是什么,又如何具体到一些举措、动作上,才能确保落地,从而切实推动产业升级?业界需要一个关于“新动能”如何被激发的切实路线图。事实上,针对产业升级的“新动能”,最终还是

  • 大模型“1元购”?AI公司加速奔向应用端“大航海时代”

    自字节跳动发布豆包大模型,互联网大厂纷纷就位,击穿“地板价”的打法从C端向B端拓展。这也成为今年“618”最亮眼的价格战。5月15日,字节跳动率先宣布豆包大模型已通过火山引擎开放给企业客户,大模型定价降至0.0008元/千Tokens;5月21日,阿里云宣布0.0005元可得1000tokens,百

  • 生产力工具中的“六边形战士”:解密海螺AI“红海突围”的底气

    2023年可以说是人工智能行业最振奋的一年,大模型的能力每隔一段时间就会上一个新台阶,汹涌澎湃的技术革命迅速影响着每一个人的生活,AGI不再是一种技术理想,而是触手可及的现实。到了2024年,人工智能的热度不减,但口口相传的“百模大战”并未上演。资本市场罕见地“降温”,不少大模型悄无声息地消失,有机

  • 谷歌发布多模态大模型重回领先,中国大模型谁能一战

    多模态是AI大模型发展的未来方向。

    标签:
    谷歌
    大模型
  • 大模型“黑洞”能否逆袭成盈利“金矿”?揭秘未来走向!

    ChatGPT运行日耗70万美金!GPT-4训练成本破10亿美金大关!OpenAI2024年财务警钟敲响,破产风险浮现!国产大模型烧钱大战升级!百度、科大讯飞、阿里、腾讯等巨头已烧掉上百亿资金!大模型背后的“烧钱”豪赌,谁能笑到最后?降低成本大模型成本怎么降低?有两条比较实用的路径大模型背后的成本确

  • 百度文心智能体有什么用、怎么创建和如何使用?

    前言:这是白杨SEO公号原创第530篇。为什么写这个?一个星期多前在白杨流量汇群看到有人问,自己实战测试研究了下分享给大家,也许对大家有点用。本文大纲:1、百度智能体是什么?2、百度智能体有什么用?3、百度智能体怎么创建?4、百度智能体如何用(营销)?百度智能体是什么?百度智能体,准确的叫法应该是百

    标签:
    百度文心

编辑推荐