整个AI领域,GPT-4 发布无疑成为载入 AI 史册的大事件。但其还留下来一些发展空间,其不可能把所有的事情都做完。比如,涉及小数、分数的运算,GPT-4 可能给不出正确答案(其多位乘法运算准确率仅为 4.3%)。
可以说,现阶段我们并没有实现理想中的「通用人工智能」,强如 GPT-4 也并不完美。这也意味着,对于大模型使用者或者想在其上开发应用的技术人员来说,GPT-4 或许不是唯一的选择,甚至不是最适合的选择。
那么,在生成式 AI 的下半场,应用到底应该怎么造?这并不是一个能够简单得出答案的问题,很多时候,我们恨不得把现有的比较强的模型都试一下。但即使要做这件事也不容易,因为很多模型在发布的同时其实并没有提供太多「配套服务」,试用也有成本和代价。
好在,拥有强大基础设施的亚马逊云科技也关注到了这些问题。近日正式上线的 Amazon Bedrock 就是奔着「提供更多选择」和配套服务这一目标来的。
一、Claude、Llama 2、Stable Diffusion... 超全明星模型库
除了 ChatGPT,在更多领域中,人们想要应用生成式 AI 还存在肉眼可见的挑战:我们必须构建专用于生成式 AI 的硬件基础设施,配合自身数据对大模型进行调优,不断更新部署,同时还需要保护隐私数据的安全。即使对于科技公司而言,这也是非常复杂的事。
对此,亚马逊云科技拿出了一套帮助人们建大模型应用的「基础设施」。
今年 4 月,亚马逊云科技正式发布 Amazon Bedrock,这是一套生成式 AI 全托管服务,包含业界领先的基础模型和构建生成式 AI 应用程序所需的一系列功能。
Amazon Bedrock 汇聚了业内几乎所有领先的基础大模型,面对不同应用场景,它可以让人们只需通过单一 API 就能用上来自 AI21 Labs、Anthropic、Cohere、Meta Llama2、Stability AI 等公司的先进大模型来构建自己的应用。
提到亚马逊,很多人可能都会想到前段时间的一个重要融资事件:他们计划对 OpenAI 头号竞争对手 ——Anthropic 投资 40 亿美元。
在大模型创业领域,Anthropic 是一个非常耀眼的存在。它由 OpenAI 前研究副总裁 Dario Amodei、GPT-3 论文第一作者 Tom Brown 等人在 2021 年共同创立,其创始成员大多为 OpenAI 的核心员工,他们曾经深度参与过 OpenAI 的 GPT-3,率先提出引入人类偏好的强化学习(RLHF)等技术。
这套强大的阵容打造出了一个同样耀眼的模型 ——Claude(最新版本是 Claude 2)。在某些方面,这个模型甚至做到了 GPT-4 都没做到的事情,比如 100k token 的上下文窗口,其代码生成能力也超过了原版的 GPT-4。这些都是亚马逊选择投资 Anthropic 的重要原因。
更重要的是,亚马逊云科技发布的新闻中有这么一段话:「作为投资协议的一部分,Anthropic 将使用亚马逊云科技的服务承担关键任务工作负载,合作进行安全研究和未来基础模型开发。使用亚马逊云科技的开发人员和工程师将能够通过 Amazon Bedrock 在 Anthropic 最先进的模型基础上构建应用。」
没错,应用生成式 AI,现在有了新的思路:有人把表现优秀的模型上线到 AI 基础设施平台上,让用户去选什么是最合适的。为了扩大操作的范围,Amazon Bedrock 不仅上线了 Claude 2,还有开源界的扛把子 Llama 2 以及口碑同样很好的 Jurassic-2、Command 等模型。
Jurassic-2 来自 AI21 Labs,是业内规模最大,性能最强的几种基础大模型之一。在 Amazon Bedrock 上甚至提供了超千亿参数的 Ultra 版本,其可以应用于任何复杂的语言生成任务,例如问答、摘要、长格式副本生成、高级信息提取等,也支持多种语言。
Command 则是另一家明星创业公司 Cohere 推出的,可够接受用户个性化命令训练的文本生成模型。企业用户在将自己的数据和 Command 结合之后,就可以生成一个面向特定应用的语言模型,能在实际业务中立即发挥作用。在 520 亿参数的体量之上,Command 的性能超过了很多更大的模型。
此外,在 ChatGPT 之前就已席卷 AI 圈,拥有强大文生图能力的 Stable Diffusion 也在他们的模型列表里。
至此,在大模型应用的方向上,一条道路正在变得逐渐清晰。
二、生成式 AI 落地的全流程服务
最近在业内,人们对于大模型的应用方向逐渐形成了一种思路:利用业内领先的大模型作为基础模型(Foundation Model),配合自有数据进行训练和调优,进而构建出面向不同业务场景的应用。亚马逊云科技把这条路迅速成为了现实,还进一步降低了企业入门的难度。
在 Amazon Bedrock 的基础之上,企业可以更方便、快速地尝试各种领先的基础模型,进行提示工程,完成微调和检索增强生成(RAG)等动作,使用自身专有数据定制模型。
利用 Amazon Bedrock Agents 工具生成式 AI 应用的开发、部署、管理等 Agent 能力被集合在一起。我们可以像用 AutoGPT 一样无需编写任何代码就能创建出托管代理(AI agent),让它来指挥大模型执行复杂的任务,如旅行预订、处理保险索赔、策划广告活动和管理库存等。
只需用自然语言文字写指令,Agent 就能明白要完成的目标。
在平台和硬件上,作为专为人工智能打造的平台,Amazon Bedrock 连接了亚马逊云科技的基础设施,从硬件和软件都对 AI 计算进行了专门的优化,覆盖大模型从构建、训练到部署的一系列工作负载。由于 Amazon Bedrock 采用无服务器(Serverless)技术,客户不必管理任何基础设施,就能在熟悉的亚马逊云科技服务平台上将生成式 AI 能力安全地集成和部署到应用程序中。
想要做大模型的应用,一个绕不过的问题就是算力的成本。最近就有人给微软 GitHub Copilot 的服务算了笔账:每月每位用户收费 10 美元,结果微软反而还要倒贴 20 美元。
对于亚马逊云科技这样的服务厂商而言,提高算力、降低成本的系统性解决方案是其最擅长的事。以使用最先进 AI 芯片英伟达 H100 的 Amazon EC2 P5 为例,它可以为训练大模型提供高达 20 exaflops 的计算性能。与上一代基于 GPU 的实例相比,训练时间最多可缩短 6 倍,而训练成本则可以降低多达 40%。
具体到每 token 的价格上,Amazon Bedrock 上使用 Claude 系列模型的价格相比 GPT 系列有显著优势。
当然,Amazon Bedrock 也充分考虑了安全性和隐私保护。客户可以使用 Amazon PrivateLink 在 Amazon Bedrock 与虚拟私有网络(VPC)之间建立专门的安全连接,确保任何数据传输都不会暴露在公共网络上。
有趣的是,除了可以高效构建生成式 AI 应用之外,亚马逊云科技也在其他层面上充分利用技术帮我们提高工作效率,比如利用大模型工具写有你「自己风格」的代码。
Amazon CodeWhisperer 是亚马逊云科技提出的 AI 编码应用程序,可在 IDE 中生成整行代码和完整的函数代码建议,帮人加速完成工作,它在今年 6 月发布了预览版,并对个人开发者免费。目前它可以帮人们生成的 15 种编程语言的代码,包括 Python、Java 和 JavaScript。
最近,亚马逊云科技推出了一项 CodeWhisperer 企业计划,旨在实现自定义化的 AI 代码生成和建议服务。基于新功能,用户可以利用企业内部的代码存储库当训练数据,让 AI 相应地调整代码生成建议,管理员也可以从控制台管理自定义,在控制台查看评估指标,估计每个自定义的执行方式,并有选择地将它们部署给开发人员,保证了企业质量与安全标准。
在开发新技术之外,我们也能应用生成式 AI 提高业务评估和诊断的效率。Amazon QuickSight 提供了生成式 BI 的数据分析功能,它能够创建交互式仪表盘、分页报告以及嵌入式分析,同时具备进行自然语言查询的能力,让业务分析师能够更加方便快捷的探索数据,并使用自然语言描述轻松创建可视化报告。
在所有流程上,亚马逊云科技提供的能力大幅度降低了先进大模型的落地门槛,在人们使用技术领先大模型的同时,消除了管理环境、配置硬件与安全管理的事务,只需要关心业务创新就可以了。
三、生成式 AI 的变革,应该走这条路
我们知道,生成式 AI 的前景是不可限量的。
随着门槛被 AI 基础设施打下来,我们可以展望:在医疗健康领域,让 AI 自动提取关键细节并根据临床医生与患者的互动创建文档摘要;在药物发现上,使用生成式 AI 工具进行蛋白质折叠、蛋白质序列、对接和分子设计,加速药物发现和设计过程;在制造业中,生成式 AI 可以通过提取历史数据实时诊断设备故障,并建议维护操作,例如输入调整、维修或可能的备件。
利用开箱即用的生成式 AI 服务提升创新效率,更快地构建出实用化应用,或许才是大模型时代创新的正确方式。
如此看来,构建平台,降低门槛的意义与 Llama2 这样的重要技术创新可谓同等重要。
正如亚马逊 CEO Andy Jaessy 所说的:「让任何人,哪怕他还在自己的宿舍或者车库里刚刚开始创业之旅,也能获得与大型企业一样先进的基础设施和成本来实现自己的创新。我们希望帮助所有初创企业都有机会成为明天的『巨头』。」
一句话,亚马逊云科技提供的服务,正在让众多AI 浪潮旁观者变成参与者。一场变革正悄然发生,生成式 AI 也将会在不远的未来发生颠覆式变化,冲击各行各业。
申请创业报道,分享创业好点子。点击此处,共同探讨创业新机遇!
图片|PhotobyLevartPhotographeronunsplash©自象限原创作者|周游编辑|程心OpenAI又让整个大模型界炸开了锅。10月5日消息,据路透社报道,OpenAI正在探索制造自己的人工智能芯片,并已开始评估潜在的收购目标。据统计,OpenAI至少投资了3家芯片公司,其中Ce
人工智能(AI)是当今科技领域最具创新性和潜力的领域之一,也是微软公司的核心业务和竞争优势所在。然而,AI的发展也面临着巨大的能源挑战,因为AI需要大量的算力来处理海量的数据,而算力又意味着能耗。
9月22日,“创客北京2023”创新创业大赛算能科技·企业AI+TPU专项赛决赛圆满完成。本次比赛有417个各具特色的创新创业项目入选算能科技专项赛道,经过层层选拔,最终24个项目晋级决赛,并于今天展开了激烈的比赛。算能大模型产品总监孙哲作为承办单位代表,在活动上致辞:本届“创客北京”大赛是一项为促
火山引擎数智平台VeDI推出“AI助手”,通过接入人工智能大模型,帮助企业提升数据处理和查询分析的效率,也就是帮助不会写代码的运营人员通过与大模型对话,做好业务运营数据的取数、看数和归因分析。
2月5日,春节将至年味渐浓,阿里云通义千问APP上线多项免费新应用,涵盖全家福、拜新年、万物成龙等图像生成的新玩法,
作者|曾响铃文|响铃说在ChatGPT引爆大模型热潮的2023年,很多人其实都还处于只听说没用过的阶段。到了国内最早获批的百度文心一言、中科院紫东太初、商汤日日新等正式对公众开放服务后,最先进的AI科技,才丝滑地飞入寻常百姓家了。人工智能带来的颠覆性让大家伙短暂地担忧过生成式应用“会不会把我的饭碗抢
创新和用户拓展,哪个都不能太快
文|智能相对论作者|沈浪“面向AI时代,所有的产品都值得用大模型重新升级。”大模型甚嚣尘上,各行各业都在尝试用大模型来重做业务。此前,用友率先发布了业内首个企业服务大模型YonGPT。作为大模型与企业运营管理的深度结合,YonGPT是否能把大模型的行业应用路径给走通?从目前透露出来的信息来看,用友Y
按照吞吐量排名,全世界最大的50个港口,中国占了29个。在中国的港口和码头上,一场进化正在发生:人在这个生态中占的比重越来越少,技术接管的要素正在越来越多。像是最具代表性的全球综合自动化程度最高的码头——上海洋山港四期自动化码头上,甚至到了“人迹罕见”的地步。之所以称之为进化,是因为任何事物在规模达
高通作为人工智能领域的重要参与者可能被低估。
总之,博通成为一家财务稳健、盈利能力卓越的公司。
在这个以效率为先的时代,AI的广泛应用自然而然,而若谈及受到影响最大的行业,搜索领域必定是其中之一。目前,抖音、B站、淘宝等互联网平台均推出了自家的AI搜索产品,而垂直搜索领域的玩家也在新兴技术趋势下找到了更大的革新动力。2023年10月,百度旗下“简单搜索”宣布升级,成为百度通过大模型重构的第一个
什么才是真正的人工智能?在每个人都在谈人工智能的时代,这个最基础的问题反而不那么好回答。最近荣耀发布的MagicOS8.0(中文名:魔法OS8.0)似乎给了我们一个最接近正确答案的解题方向,那就是基于意图识别的人机交互。为此,我专访了荣耀CEO赵明,听他详细阐述了关于MagicOS8.0、端侧AI、
近日,人工智能领域的领军人物,ChatGPT之父萨姆·阿尔特曼(SamAltman)发表了令人振奋的言论。他表示,人类水平的人工智能(AI)即将出现,这一变革性技术的发展将为世界带来前所未有的影响。作为OpenAI的首席执行官,阿尔特曼的这番言论引发了业界和学术界的广泛关注。一直以来,实现具有人类智